High-flow forecasting in the Severn river basin, using deep learning and
dynamic multimodal fusion
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3.Methods & data

4.Model
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2. Inner model
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3. Future streamflow
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5.Reslults
A. Operation-level fusion for univariate and Multivariate Model 2. LETM. EncDooOmLow.Fus LSTM-EncDec-Att-Fus
. : : EEE Univariate Model 3: 1DCNN-BILSTM-Att-Fus LSTM-EncDec-Op-Lev-Fus
multivariate models compared to attention-based Model 4: 1DCNN-BILSTM-Op-Lev-Fus mmm 1DCNN-BILSTM-Att-Fus

Bl 1DCNN-BILSTM-Op-Lev-Fus

fusion leads to improved MAE & MAE,,;,, by 0.6
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B. Multivariate models are similar, slightly more
accurate by 1.33% (MAE) than univariate models
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and stability (IQR). Models
E. For this model, SHapley Additive o
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Op-Lev-Fus 26.32 0.76 106.85 25.73 0.77 107.70 recent timesteps. Feature

6.Conclusion

We compared two fusion strategies for adaptively integrating multiple past input variables within LSTM-based multimodal models
for streamflow forecasting. Our findings recommend that a multi-site LSTM Encoder-Decoder model with operation-level
fusion balances accuracy and efficiency aspects against all model combinations, with explainability tests being satisfying. In the
future, we will consider adding spatiotemporal inputs and focusing on uncertainty-aware methods for mixed-quality data.
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