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t We leverage dynamic multimodal fusion methods applying them in LSTM-based backbone models.
Why? For high-flow, flood-prone rivers, improving short-term forecasts is vital for effective warning alerts.
Wider problem: Climate change leads to more intense rainfall, imposing greater flood-risk in existing high-flow areas.

1. Study area

Rivers Severn and Wye are the most high-flow in 
Great Britain, responding intensely to rainfall in 
steep catchments. The average annual rainfall in 

the area lies between 700 and 1000 mm. 
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*Climatic variables (ERA5 single-levels):

• Rainfall
• Air temperature
• Temperature at dew point
• Wind speed at u-component
• Wind speed at v-component
• Soil temperature at layer 1
• Soil temperature at layer 2

Multisource hydrometeorological 
data: Streamflow observations from 6 
river stations (obtained from DEFRA 
Hydrology API) and reanalysis 
climatic data (obtained from ERA5 
single-levels) are used. 
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Improving high-flow forecasting using dynamic multimodal feature fusion

• We compare operation-level and attention-based dynamic multimodal fusion.
• This is tested in the neural network backbones of : LSTM Encoder-Decoder and 1DCNN-BiLSTM.
• 2 model types were created: a univariate (station-specific) & a multivariate model (trained to all stations).
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3. Results

4. Conclusions  

• Operation-level fusion is lowering MAE by 3.96% compared to 
attention-based fusion.

•  

• Operation-level fusion captures better near-peak regions by 7.40% 
(MAEHIGH) compared to attention-based fusion (red box areas below).

• According to the boxplot above, 
univariate models have higher MAE 
by 2.86% than multivariate. 
• Univariate models are substantially 

slower than multivariate by 74%.
•  

• But they yield twice tighter IQRs than 
multivariate models. 

• For small catchment stations 54095 & 55002 all 
models underperform on the above hydrographs (latter 
2 rows).
• LSTM Encoder-Decoder compared to 1DCNN-BiLSTM 

increase MAE and NSE a little by 1.10% and 1.37% .

Drop in MAE

•  Operation-level fusion for both univariate and 
multivariate models is better compared to 
attention-based  by 3.96% for MAE, 7.40% for 
MAEHIGH, 1.74% for NSE, 3.59% for MASE. 

•Multivariate models are better by 2.86% in 
terms of MAE and faster by 74% than univariate, 
but twice more unstable.
•Next steps: we will add the spatial dimensions 

and we will focus on reducing uncertainty.
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Univariate Models Multivariate Models
Metric MAE NSE MASE MAEHigh MAE NSE MASE MAEHigh

LSTM-Enc-Dec
Att-Fusion 29.20 0.72 0.56 71.01 28.20 0.73 0.54 71.49

Op-Lev-Fusion 28.30 0.73 0.54 64.29 27.63 0.73 0.53 67.07

1DCNN-BiLSTM
Att-Fusion 29.72 0.71 0.57 69.18 28.85 0.71 0.55 74.14

Op-Lev-Fusion 28.33 0.72 0.54 69.85 27.57 0.73 0.53 63.07

*Less memory-intensive 
than cross-attention

Inter-attention:

2. Model & data
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