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‘w We leverage dynamic multimodal fusion methods applying them in LSTM-based backbone models. =2 * We compare operation-level and attention-based dynamic multimodal fusion.
-§ Why? For high-flow, flood-prone rivers, improving short-term forecasts is vital for effective warning alerts. S « This is tested in the neural network backbones of : LSTM Encoder-Decoder and 1DCNN-BIiLSTM.
Wider problem: Climate change leads to more intense rainfall, imposing greater flood-risk in existing high-flow areas. * 2 model types were created: a univariate (station-specific) & a multivariate model (trained to all stations).
1. Study area 2. Model & data 3. Results
Severn basin river stations in Great Britain Model structure Multisource hydrometeorological s = U(MAE) . Opergtion-level fus.ion is lowering MAE by 3.96% compared to
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* Multivariate models are better by 2.86% in I V| R O , o MAE NSE MASE  MAB  MAETNSE MASE  MAEm .

o R I A gating network adaptively 1! I ! ! ST ErEs ! * « For small catchment stations 54095 & 55002 all
terms Of MAE and faster by 74% than univariate, : combines different fusion : : e 1 LJTM | LSLM o LJTM | : | Att-Fusion 2920 072 056  71.01 2820 073 054  71.49 models underperform on the above hydrographs (latter
but twice more unstable. I operations (e.g., addition '] o : : i i 1 : 1 : Op-lev-Fusion 2830 073 054 6429 2763 073 053  67.07 2 rows)

ol ’ 4l7 e xt-1L *

. . . . . . | . . ] i i 1 1DCNN-BIiLSTM H
Next stepg. we will add the.spatlal d|rqen5|ons l Concatenaftt:(s)ir(;f; weighted || memory-mensive | | " Ll SN ori s cors asss on1 oss  sans* LSTM Encoder-Decoder compared to TDCNN-BiLSTM
and we will focus on redUClﬂg uncertainty. AN L/ ' thancross-atiention R - ! Op-Llev-Fusion 2833 072 054  69.85 2757 073 053  63.07 increase MAE and NSE a little by 1.10% and 1.37% .
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